
12.7 (Optional) Polymorphism, Virtual

Functions and Dynamic Binding “Under the

Hood” (cont.)

• Now let’s see how a typical virtual function call executes.

• Consider the call baseClassPtr->print() in function
virtualViaPointer (line 69 of Fig. 12.17).

• Assume that baseClassPtr contains employees[1] (i.e.,
the address of object commissionEmployee in
employees).

• When the compiler compiles this statement, it determines that the
call is indeed being made via a base-class pointer and that
print is a virtual function.

• The compiler determines that print is the second entry in each
of the vtables.

• To locate this entry, the compiler notes that it will need to skip
the first entry.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual

Functions and Dynamic Binding “Under the

Hood” (cont.)

• Thus, the compiler compiles an offset or

displacement of four bytes (four bytes for each

pointer on today’s popular 32-bit machines,

and only one pointer needs to be skipped) into

the table of machine-language object-code

pointers to find the code that will execute the

virtual function call.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual

Functions and Dynamic Binding “Under the

Hood” (cont.)
• The compiler generates code that performs the following

operations.
1. Select the ith entry of employees, and pass it as an argument to

function virtualViaPointer. This sets parameter
baseClassPtr to point to commissionEmployee.

2. Dereference that pointer to get to the commissionEmployee
object.

3. Dereference commissionEmployee’s vtable pointer to get to
the CommissionEmployee vtable.

4. Skip the offset of four bytes to select the print function pointer.

5. Dereference the print function pointer to form the ―name‖ of the
actual function to execute, and use the function call operator () to
execute the appropriate print function.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and

Runtime Type Information with Downcasting,

dynamic_cast, typeid and type_info

• Recall from the problem statement at the beginning of
Section 12.6 that, for the current pay period, our fictitious
company has decided to reward
BasePlusCommissionEmployees by adding 10
percent to their base salaries.

• When processing Employee objects polymorphically in
Section 12.6.5, we did not need to worry about the
―specifics.‖

• To adjust the base salaries of
BasePlusCommissionEmployees, we have to
determine the specific type of each Employee object at
execution time, then act appropriately.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and

Runtime Type Information with Downcasting,

dynamic_cast, typeid and type_info (cont.)

• This section demonstrates the powerful capabilities of

runtime type information (RTTI) and dynamic

casting, which enable a program to determine an

object’s type at execution time and act on that object

accordingly.

• Figure 12.19 uses the Employee hierarchy

developed in Section 12.6 and increases by 10

percent the base salary of each

BasePlusCommissionEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and

Runtime Type Information with Downcasting,

dynamic_cast, typeid and type_info (cont.)

• Since we process the Employees polymorphically, we cannot
(with the techniques you’ve learned so far) be certain as to which
type of Employee is being manipulated at any given time.

• BasePlusCommissionEmployee employees must be
identified when we encounter them so they can receive the 10
percent salary increase.

• To accomplish this, we use operator dynamic_cast (line 39)
to determine whether the current Employee’s type is
BasePlusCommissionEmployee.

• This is the downcast operation we referred to in Section 12.3.3.

• Lines 38–39 dynamically downcast employeePtr from type
Employee * to type BasePlusCommissionEmployee *.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and

Runtime Type Information with Downcasting,

dynamic_cast, typeid and type_info (cont.)

• If employeePtr element points to an object that is a

BasePlusCommissionEmployee object, then that object’s

address is assigned to derived-class pointer derivedPtr;

otherwise, nullptr is assigned to derivedPtr.

• Note that dynamic_cast rather than static_cast is

required here to perform type checking on the underlying

object—a static_cast would simply cast the Employee *

to a BasePlusCommissionEmployee * regardless of the

underlying object’s type.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and

Runtime Type Information with Downcasting,

dynamic_cast, typeid and type_info (cont.)

• With a static_cast, the program would attempt to increase

every Employee’s base salary, resulting in undefined behavior

for each object that is not a

BasePlusCommissionEmployee.

• If the value returned by the dynamic_cast operator in lines

38–39 is not nullptr, the object is the correct type, and the if

statement (lines 42–49) performs the special processing required

for the BasePlusCommissionEmployee object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and

Runtime Type Information with Downcasting,

dynamic_cast, typeid and type_info (cont.)

• Operator typeid (line 59) returns a reference
to an object of class type_info that contains
the information about the type of its operand,
including the name of that type.

• When invoked, type_info member function
name (line 59) returns a pointer-based string
containing the typeid argument’s type name
(e.g., "class
BasePlusCommissionEmployee").

• To use typeid, the program must include
header <typeinfo> (line 8). ©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

