12.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood” (cont.)

Now let’s see how a typical virtual function call executes.

Consider the call baseClassPtr->print() in function
virtualviaPointer (line 69 of Fig. 12.17).

Assume that baseClassPtr contains employees[1] (i.e,
the address of object commissionEmployee in

emp loyees).

When the compiler compiles this statement, it determines that the

call is indeed being made via a base-class pointer and that
printisavirtual function.

The compiler determines that print is the second entry in each
of the vtables.

To locate this entry, the compiler notes that it will need to skip
the first entry.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood” (cont.)

* Thus, the compiler compiles an offset or
displacement of four bytes (four bytes for each
pointer on today’s popular 32-bit machines,
and only one pointer needs to be skipped) into
the table of machine-language object-code
pointers to find the code that will execute the
virtual function call.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood” (cont.)

« The compiler generates code that performs the following
operations.

1. Select the # entry of employees, and pass it as an argument to
function virtualviaPointer. This sets parameter
baseClassPtr to pointto commissionEmployee.

2. Dereference that pointer to get to the commissionEmployee
object.

3. Dereference commissionEmployee’s viable pointer to get to

the CommissionEmployee viable.

Skip the offset of four bytes to select the print function pointer.

5. Dereference the print function pointer to form the “name” of the
actual function to execute, and use the function call operator () to
execute the appropriate print function.

B

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Performance Tip 12.1

Polymorphism, as typically implemented with virtual
functions and dynamic binding in C++, is efficient. You
can use these capabilities with nominal impact on
performance.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Performance Tip 12.2

Virtual functions and dynamic binding enable
polymorphic programming as an alternative to switch
logic programming. Optimizing compilers normally
generate polymorphic code that’s nearly as efficient as
hand-coded swi tch-based logic. Polymorphism’s
overhead is acceptable for most applications. In some
situations—such as real-time applications with stringent
performance requirements—polymorphism’s overhead
may be too high.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and
Runtime Type Information with Downcasting,
dynamic_cast, typeid and type_info

 Recall from the problem statement at the beginning of
Section 12.6 that, for the current pay period, our fictitious
company has decided to reward
BasePlusCommissionEmployees by adding 10
percent to their base salaries.

« When processing Emp 1oyee objects polymorphically in
Section 12.6.5, we did not need to worry about the
“specifics.”

« To adjust the base salaries of
BasePlusCommissionEmployees, we have to
determine the specific type of each Employee object at
execution time, then act appropriately.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and
Runtime Type Information with Downcasting,
dynamic_cast, typeid and type_info (cont.)

 This section demonstrates the powerful capabilities of
runtime type information (RTTI) and dynamic
casting, which enable a program to determine an
object’s type at execution time and act on that object

accordingly.

 Figure 12.19 uses the Emp 1oyee hierarchy
developed in Section 12.6 and increases by 10
percent the base salary of each
BasePlusCommissionEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

// Fig. 12.19: figl2_19.cpp

// Demonstrating downcasting and runtime type information.
// NOTE: You may need to enable RTTI on your compiler
// before you can compile this application.

#include <iostream>

#include <iomanip>

#include <vector>

#include <typeinfo>

#include

10 #include

I1 #include

12 #include

I3 using namespace std;

OoOo~NOTUnNHh WN=

14

I5 dint main()

16 {

17 // set floating-point output formatting

I8 cout << fixed << setprecision()R

19

20 // create vector of three base-class pointers
21 vector < Employee * > employees();

22

Fig. 12.19 | Demonstrating downcasting and runtime type information. (Part |
of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

// initialize vector with various kinds of Employees
employees['] = new SalariedEmployee(

H) 3 bl);
employees[] = new CommissionEmployee(

?]) L);
employees[] = new BasePlusCommissionEmployee(

’ L] 3 ¥ ’) ;

// polymorphically process each element in vector employees
for (Employee *employeePtr : employees)
{
employeePtr->print(); // output employee information
cout << endl;

// attempt to downcast pointer
BasePlusCommissionEmployee *derivedPtr =
dynamic _cast < BasePlusCommissionEmployee * >(employeePtr);

Fig. 12.19 | Demonstrating downcasting and runtime type information. (Part 2

of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

41 // determine whether element points to a BasePlusCommissionEmployee

42 if (derivedPtr !'= nullptr) // true for "is a" relationship
43 {

44 double oldBaseSalary = derivedPtr->getBaseSalary();
45 cout << << oldBaseSalary << endl;
46 derivedPtr->setBaseSalary(* oldBaseSalary);
47 cout <<

48 << derivedPtr->getBaseSalary() << endl;

49 } // end if

50

51 cout << << employeePtr->earnings() << ;
52 } // end for

53

54 // release objects pointed to by vector’s elements

55 for (const Employee *employeePtr : employees)

56 {

57 // output class name

58 cout <<

59 << typeid(*employeePtr).name() << endl;

60

61 delete employeePtr;

62 } // end for

63 1} // end main

Fig. 12.19 | Demonstrating downcasting and runtime type information. (Part 3
of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
old base salary: $300.00

new base salary with 10% increase is: $330.00

earned $530.00

deleting object of class SalariedEmployee
deleting object of class CommissionEmployee
deleting object of class BasePlusCommissionEmployee

Fig. 12.19 | Demonstrating downcasting and runtime type information. (Part 4
of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and
Runtime Type Information with Downcasting,
dynamic_cast, typeid and type_info (cont.)

* Since we process the Emp 1oyees polymorphically, we cannot
(with the techniques you’ve learned so far) be certain as to which
type of Emp loyee is being manipulated at any given time.

« BasePlusCommissionEmployee employees mustbe
Identified when we encounter them so they can receive the 10
percent salary increase.

« To accomplish this, we use operator dynamic cast (line 39)
to determine whether the current Emp loyee’s type is
BasePlusCommissionEmployee.

« This iIs the downcast operation we referred to in Section 12.3.3.

 Lines 38-39 dynamically downcast emp loyeePtr from type
Employee * to type BasePlusCommissionEmployee *.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and
Runtime Type Information with Downcasting,
dynamic_cast, typeid and type_info (cont.)

« |f employeePtr element points to an object that /s a
BasePlusCommissionEmployee object, then that object’s
address is assigned to derived-class pointer derivedPtr;
otherwise, nul 1ptr isassigned to derivedPtr.

« Note that dynamic_cast rather than static_castis
required here to perform type checking on the underlying
object—a static_cast would simply cast the Employee *
to aBasePlusCommissionEmployee * regardless of the

underlying object’s type.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and
Runtime Type Information with Downcasting,
dynamic_cast, typeid and type_info (cont.)

« Withastatic_cast, the program would attempt to increase
every Emp loyee’s base salary, resulting in undefined behavior
for each object that is not a
BasePlusCommissionEmployee.

« |f the value returned by the dynami c_cast operator in lines
38-39 /snotnullptr, the object /sthe correct type, and the 1T
statement (lines 42—49) performs the special processing required
for the BasePlusCommissionEmployee object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.8 Case Study: Payroll System Using Polymorphism and
Runtime Type Information with Downcasting,
dynamic_cast, typeid and type_info (cont.)

» Operator typeid (line 59) returns a reference
to an object of class t ype info that contains
the information about the type of its operand,
Including the name of that type.

« When invoked, type_1nfo member function
name (line 59) returns a pointer-based string
containing the typeid argument’s type name
(e.g., 'class
BasePlusCommissionEmployee™).

« To use type1id, the program must include
header <typedmfo>-{line 8).

Rights Re

Portability Tip 12.1
4@1 The string returned by type_info member function
name may vary by compiler.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

